Properties of k-Rings and Rings Satisfying Similar conditions
نویسندگان
چکیده
Jacobson introduced the concept of K-rings, continuing the investigation of Kaplansky and Herstein into the commutativity of rings. In this note we focus on the ring-theoretic properties of K-rings. We first construct basic examples of K-rings to be handled easily. It is shown that a semiprime K-ring of bounded index of nilpotency is a commutative domain. It is proved that if R is a prime K-ring then its classical quotient ring is a local ring with a nil Jacobson radical. We also show that if R is a π-regular K-ring then R/P is a field for every strongly prime ideal P of R. The basic structure of a condition, unifying K-rings and reversible rings, is studied with respect to zero-divisors in matrices and polynomials.
منابع مشابه
Group rings satisfying generalized Engel conditions
Let R be a commutative ring with unity of characteristic r≥0 and G be a locally finite group. For each x and y in the group ring RG define [x,y]=xy-yx and inductively via [x ,_( n+1) y]=[[x ,_( n) y] , y]. In this paper we show that necessary and sufficient conditions for RG to satisfies [x^m(x,y) ,_( n(x,y)) y]=0 is: 1) if r is a power of a prime p, then G is a locally nilpotent group an...
متن کامل$k$-power centralizing and $k$-power skew-centralizing maps on triangular rings
Let $mathcal A$ and $mathcal B$ be unital rings, and $mathcal M$ be an $(mathcal A, mathcal B)$-bimodule, which is faithful as a left $mathcal A$-module and also as a right $mathcal B$-module. Let ${mathcal U}=mbox{rm Tri}(mathcal A, mathcal M, mathcal B)$ be the triangular ring and ${mathcal Z}({mathcal U})$ its center. Assume that $f:{mathcal U}rightarrow{mathcal U}$ is...
متن کاملCompleteness results for metrized rings and lattices
The Boolean ring $B$ of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (for example, ${0})$ that are closed under the natural metric, but has no prime ideal closed under that metric; hence closed radical ideals are not, in general, intersections of closed prime ideals. Moreover, $B$ is known to be complete in its metric. Togethe...
متن کاملLie Ideals and Generalized Derivations in Semiprime Rings
Let R be a 2-torsion free ring and L a Lie ideal of R. An additive mapping F : R ! R is called a generalized derivation on R if there exists a derivation d : R to R such that F(xy) = F(x)y + xd(y) holds for all x y in R. In the present paper we describe the action of generalized derivations satisfying several conditions on Lie ideals of semiprime rings.
متن کاملϕ-ALMOST DEDEKIND RINGS AND $\Phi$-ALMOST DEDEKIND MODULES
The purpose of this paper is to introduce some new classes of rings and modules that are closely related to the classes of almost Dedekind domains and almost Dedekind modules. We introduce the concepts of $\phi$-almost Dedekind rings and $\Phi$-almost Dedekind modules and study some properties of this classes. In this paper we get some equivalent conditions for $\phi$-almost Dedekind rings and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJAC
دوره 21 شماره
صفحات -
تاریخ انتشار 2011